
LocAppl Flow Diagram
Commentary
Feb 17, 2000

LocAppl
This entry is called by Data Access Table processing when the 0x1D entry is 

encountered that means to call all enabled local applications. It does this job by calling 
LACall for each entry in the LATBL. It retains a copy of the enable bit status in the LATBL 
entry, so it can detect transitions that imply initialization or termination calls are required. After 
scanning through all LATBL entries, NewScan is called to free dynamic memory used by a 
currently-executing local application that has the new download flag set. On the next cycle, 
LACall will detect this situation and force a new copy to be allocated in dynamic memory to 
hold the new version.

LACall
After invoking ProgPtr, if a newly-downloaded program copy is detected, a termination 

call is forced in order to properly sequence to the new version. The enable Bit# is saved 
around the call to the local application, so that in event of a system abort occurring while the 
application is executing, the system abort routine can arrange to clear the enable bit. When the 
system reboots, the local application will not be reenabled to possible cause a repeated abort.

ProgPtr
This routine, given an 8-character program file name, returns a pointer to the 

executable code in dynamic memory. To do this, it searches the CODES table for a match 
(FindP); if necessary, it allocates a block of memory to hold the executable code, performing 
a checksum check in the process. 

It has two variations on this theme. In the only variation that is used (by PgTitle), the CODES 
table is searched and the checksum is checked, but it does not create an executable copy of 
the code in dynamic memory. This variation is used to display the line on the index page that 
includes an indicator to show whether a valid program copy is available in the non-volatile 
memory. This check for validity includes examining the first word of the code. (We may not be 
able to do this check under VxWorks.)

As part of the examination of the CODES table entry, the size field is checked to be in the range 
of 32–32K words. This is done just before performing the checksum calculation, which is 
merely a longword sum of unsigned 16-bit words that comprise the program code. (The largest 
program size currently in use is about 10K words.) If the checksum check fails, the CODES 
table entry PtrD field is cleared, and the nonvolatile program file is freed. If the checksum 
check was successful, LoadP is called to bring the program into dynamic memory.

LoadP
Allocate dynamic memory sufficient to hold a copy of a program, copy into it from the 

nonvolatile memory, establish the executable pointer, and increment the diagnostic counter in 
the LATBL entry.

FindP
Look for a match on the 8-character file name and return a pointer to the matching 

CODES table entry. The three modules PReqDGen, ReqDGenP, and SetProg, make calls to 
FindP in the course of supporting access to non-volatile memory files.

ClrPtrE
Given a pointer to a CODES table entry, verify that the executable pointer field is the 

address of an allocated program block in dynamic memory; then free that block as well as the 
executable pointer field.



LAPtrX
Given a pointer to the parameter list in an LATBL entry, back up from there to find the 

name of the program, then search to find the corresponding CODES table entry, and finally 
return the executable pointer field. This is needed by ACReq, Serial, and SNAP, in order to 
call a local application. The linkage to the local application is made via an entry in the PROTO 
table that was established by a call to OpenPro. The  function LAEntPro is used to obtain the 
pointer to an LATBL entry parameter list given a task name (or UDP port “task name”). ACReq 
uses LAPtrX for preparing to call an Acnet server LA, such as FTPM. Serial uses it to pass 
control to a serial port server LA, such as DNET that handles DeviceNET serial protocol access 
to PLC hardware. SNAP uses it to pass control to a UDP port server LA, such as ECHO.

InzLOOP
This routine is called at system initialization to coalesce all free blocks in non-volatile 

memory into one. This may not be possible under VxWorks. It calls the dreaded MSqueeze, 
which calls LAMove for each file that it needs to move.

NewScan
This routine is called once each cycle to check for newly-downloaded local application 

programs that are currently active. (See the description of LocAppl above.) For each that it 
finds, it frees the dynamically-allocated block that contains the executable code, thus forcing a 
reload on the following cycle of what may be a new and improved version of the LA. The effect 
is that the new version is immediately incorporated and brought into execution in place of the 
previous one.

ClrPage
For any page application that has been newly downloaded, free the executable area, if 

it exists. This routine is called by APTrig when any page application terminates. The logic 
does not support automatically switching to a new version of a page application after 
downloading; one must call up the page manually to use the new version.

VxWorks
Since we are using the real file system under VxWorks, we will not know where in non-

volatile memory a given file resides. But since we won’t be copying it into dynamic ram 
ourselves, it won’t matter. Checksum checking will not apply. The pointer to downloadable 
memory should at least be nonzero and >= 2. We need to remove the more specific checks on 
the download pointer value that presently exist, or we can use a much larger constant value.

After loading a program into dynamic memory, analogous to the VxWorks “ld” command, we 
need to get the “pointer” to the entry point. This pointer is probably a pointer to a transition 
vector, but in any case, it should be the means of indirectly invoking the entry point in C.

LocAppl Flow Diagram p. 2!


